Trimble 5600 Total Station Series

Servo-driven, highly productive measuring system upgradable to Autolock and Robotic surveying

Key Features and Benefits

- Autolock and Robotic Surveying for increased productivity
- 4-speed servo
- Active search system
- Seamless data flow
- Choice of User Interfaces

The Trimble 5600 Total Station series gives you access to the best and most productive measuring methods available—for every measuring situation—for unassisted operation.

Servo gives you a 30% productivity increase

The 5600 series is equipped with 4-speed servo operation that gives variable speed, faster, smoother and more accurate aiming. Servo is the platform for measurement automation and for further upgrades to increased productivity.

Upgrade to Autolock and the productivity increase is 50%

Autolock[™] technology enables semi-robotic operation, with measuring and recording taking place at the total station. The 5600 series seeks out the RMT target (Active Remote Measuring Target), locks to it, and follows it during movement between points. No fine adjustments needed, no focusing, no problems working in the dark (the instrument will locate the target in any situation), and no work-related injuries from constant turning of the total station. In most cases the Autolock feature makes it possible to stake out and gather survey data as fast as the rodman can move.

Upgrade to Robotic and the productivity increase is 80% Robotic operation offers the same advantages as Autolock—

The Trimble 5600 series gives you access to the best and most productive measuring methods available—for every measuring situation—for unassisted operation.

in addition, it allows you to work on your own. Robotic measuring offers more than increased productivity and reduced personnel costs. It also gives higher quality measurements — all the control initiation and registering take place at the measuring point, where any errors or discrepancies are quickly identified.

Combine Robotic with DR200+ to double productivity

The long-range Direct Reflex EDM system (DR200+) option on the 5600 series allows you to measure up to 600 meters against a white object and 200 meters against Kodak Grey (the international standard to determine the range of reflectorless total stations). That's 3.3 times further than any other reflectorless total station! And the range using a single prism is 5.5 kilometers. Combining DR200+ capability with robotic operation results in the ultimate total station.

True Integrated Surveying

There are situations where measuring by GPS is more productive than by using a conventional total station, and vice versa.

Trimble Integrated Surveying[™] solutions offer you the best of both worlds. Simply move the control unit from one system to the other in a matter of seconds and go on with your survey. The software environment is identical and the data flow seamless.

Trimble Series 5600

Distance Measurement			5603	
Accuracy M.S.E.				
Arithmetic mean value (D-bar):	$\pm(2 \text{ mm} + 2 \text{ ppm})$ $\pm(0.007 \text{ ft} + 2 \text{ ppm})$	±(2 mm + 2 ppm) ±(0.007 ft + 2 ppm)	±(2 mm + 2 ppm) ±(0.007 ft + 2 ppm)	±(3 mm + 3 ppm) ±(0.01 ft + 3 ppm)
Optional ±(1	$mm + 1 \text{ ppm} \pm (0.003 \text{ ft} + 1 \text{ pp})$		$\pm (0.007 \text{ it} \pm 2 \text{ ppin})$	\pm (0.01 ft + 5 ppm)
Standard measurement (STD):	$\pm(3 \text{ mm} + 2 \text{ ppm})$ $\pm(0.01 \text{ ft} + 2 \text{ ppm})$	±(3 mm + 2 ppm) ±(0.01 ft + 2 ppm)	±(3 mm + 2 ppm) ±(0.01 ft + 2 ppm)	$\pm (5 \text{ mm} + 3 \text{ ppm})$ $\pm (0.016 \text{ ft} + 3 \text{ ppm})$
Optional ±(2	\pm (0.01 ft + 2 ppm) mm + 2 ppm) \pm (0.007 ft + 2 pp		\pm (0.01 it + 2 ppiii)	$\pm (0.010 \text{ it } + 3 \text{ ppm})$
Fast standard (FSTD)	$\pm (8 \text{ mm} + 2 \text{ ppm})$	$\pm (8 \text{ mm} + 2 \text{ ppm})$	$\pm (8 \text{ mm} + 2 \text{ ppm})$	$\pm (8 \text{ mm} + 3 \text{ ppm})$
Optional ±(4	$\pm (0.025 \text{ ft} + 2 \text{ ppm})$ mm + 2 ppm) $\pm (0.014 \text{ ft} + 2 \text{ pp})$	±(0.025 ft + 2 ppm) pm)	$\pm (0.025 \text{ ft} + 2 \text{ ppm})$	±(0.025 ft + 3 ppm)
Fast tracking - max 4 m/s (8 knots) (TRK): Optional ±(6	±(10 mm + 2 ppm) ±(0.032 ft + 2 ppm) mm + 2 ppm) ±(0.019 ft + 2 pp	±(10 mm + 2 ppm) ±(0.032 ft + 2 ppm) pm)	±(10 mm + 2 ppm) ±(0.032 ft + 2 ppm)	±(10 mm + 3 ppm) ±(0.032 ft + 3 ppm)
Shortest possible range:	0.2 m (0.7 ft)	0.2 m (0.7 ft)	0.2 m (0.7 ft)	0.2 m (0.7 ft)
Least count				
Arithmetic mean value (D-bar): Standard measurement (STD):	0.1 mm (0.0005 ft) 1 mm (0.005 ft)	1 mm (0.005 ft) 1 mm (0.005 ft)	1 mm (0.005 ft) 1 mm (0.005 ft)	1 mm (0.005 ft) 1 mm (0.005 ft)
Fast standard (FSTD):	1 mm (0.005 ft)	1 mm (0.005 ft)	1 mm (0.005 ft)	1 mm (0.005 ft)
Fast tracking (TRK):	10 mm (0.01 ft)	10 mm (0.01 ft)	10 mm (0.01 ft)	10 mm (0.01 ft)
Measuring time:	TT T T T	TT T T T	T T 1 • · ·	TT T T T T
Arithmetic mean value (D-bar): Standard measurement (STD):	Users decision 3.5 sec.	Users decision 3.5 sec.	Users decision 3.5 sec.	Users decision 3.5 sec.
Fast standard (FSTD):	1.3 sec.	1.3 sec.	1.3 sec.	1.3 sec.
Fast tracking (TRK):	0.4 sec.	0.4 sec.	0.4 sec.	0.4 sec.
Light source:	Infrared GaAs diode	Infrared GaAs diode	Infrared GaAs diode	Infrared GaAs diode
Beam divergence:	1.6 mrad (16 cm/100 m) (0.52 ft/328 ft)	1.6 mrad (16 cm/100 m) (0.52 ft/328 ft)	1.6 mrad (16 cm/100 m) (0.52 ft/328 ft)	1.6 mrad (16 cm/100 m (0.52 ft/328 ft)
Atmospheric correction:	-60 to 195 ppm continuously	-60 to 195 ppm continuously	-60 to 195 ppm continuously	-60 to 195 ppm continuously
	5601 DR200+	5602 DR200+	5603 DR200+	5605 DR200+
Distance Measurement (with or withou		5602 DR200+	5603 DR200+	5605 DR200+
ACCURACY Distance Measurement (with or withou Accuracy SDV 5 - 200 m (16,4 ft - 656 ft)		5602 DR200+ ±(3 mm + 3 ppm) ±(0.01 ft + 3 ppm)	±(3 mm + 3 ppm) ±(0.01 ft + 3 ppm)	5605 DR200+ ±(3 mm + 3 ppm) ±(0.01 ft + 3 ppm)
<i>Distance Measurement (with or withou</i> Accuracy SDV	<u>tt reflector)</u> ±(3 mm + 3 ppm) ±(0.01 ft + 3 ppm)	±(3 mm + 3 ppm)	±(3 mm + 3 ppm)	±(3 mm + 3 ppm)
Distance Measurement (with or withou Accuracy SDV 5 - 200 m (16,4 ft - 656 ft) beyond 200 m (656 ft) (without reflector	$\frac{\pm (3 \text{ mm} + 3 \text{ ppm})}{\pm (0.01 \text{ ft} + 3 \text{ ppm})}$ r) $\pm (5 \text{ mm} + 3 \text{ ppm})$	±(3 mm + 3 ppm) ±(0.01 ft + 3 ppm) ±(5 mm + 3 ppm)	±(3 mm + 3 ppm) ±(0.01 ft + 3 ppm) ±(5 mm + 3 ppm)	±(3 mm + 3 ppm) ±(0.01 ft + 3 ppm) ±(5 mm + 3 ppm)
Distance Measurement (with or withou Accuracy SDV 5 - 200 m (16,4 ft - 656 ft) beyond 200 m (656 ft) (without reflector Shortest possible range:	$\frac{\text{tt reflector})}{\pm (3 \text{ mm } + 3 \text{ ppm})} \\ \pm (0.01 \text{ ft } + 3 \text{ ppm}) \\ \pm (5 \text{ mm } + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft } + 3 \text{ ppm}) \\ 2 \text{ m} (6.5 \text{ ft})$	±(3 mm + 3 ppm) ±(0.01 ft + 3 ppm) ±(5 mm + 3 ppm) ±(0.016 ft + 3 ppm) 2 m (6.5 ft)	±(3 mm + 3 ppm) ±(0.01 ft + 3 ppm) ±(5 mm + 3 ppm) ±(0.016 ft + 3 ppm) 2 m (6.5 ft)	±(3 mm + 3 ppm) ±(0.01 ft + 3 ppm) ±(5 mm + 3 ppm) ±(0.016 ft + 3 ppm) 2 m (6.5 ft)
Distance Measurement (with or withou Accuracy SDV 5 - 200 m (16,4 ft - 656 ft) beyond 200 m (656 ft) (without reflector Shortest possible range: Least count Arithmetic mean value (D-bar):	$\frac{\text{tt reflector})}{\pm (3 \text{ mm } + 3 \text{ ppm})} \\ \pm (0.01 \text{ ft } + 3 \text{ ppm}) \\ \text{t}(5 \text{ mm } + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft } + 3 \text{ ppm}) \\ 2 \text{ m } (6.5 \text{ ft}) \\ 0.1 \text{ mm } (0.0005 \text{ ft})$	$\pm(3 \text{ mm} + 3 \text{ ppm})$ $\pm(0.01 \text{ ft} + 3 \text{ ppm})$ $\pm(5 \text{ mm} + 3 \text{ ppm})$ $\pm(0.016 \text{ ft} + 3 \text{ ppm})$ 2 m (6.5 ft) 1 mm (0.005 ft)	$\pm(3 \text{ mm} + 3 \text{ ppm}) \\ \pm(0.01 \text{ ft} + 3 \text{ ppm}) \\ \pm(5 \text{ mm} + 3 \text{ ppm}) \\ \pm(0.016 \text{ ft} + 3 \text{ ppm}) \\ 2 \text{ m} (6.5 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft})$	\pm (3 mm + 3 ppm) \pm (0.01 ft + 3 ppm) \pm (5 mm + 3 ppm) \pm (0.016 ft + 3 ppm) 2 m (6.5 ft) 1 mm (0.005 ft)
Distance Measurement (with or withou Accuracy SDV 5 - 200 m (16,4 ft - 656 ft) beyond 200 m (656 ft) (without reflector Shortest possible range: Least count	$\frac{\text{tt reflector})}{\pm (3 \text{ mm } + 3 \text{ ppm})} \\ \pm (0.01 \text{ ft } + 3 \text{ ppm}) \\ \pm (5 \text{ mm } + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft } + 3 \text{ ppm}) \\ 2 \text{ m} (6.5 \text{ ft})$	±(3 mm + 3 ppm) ±(0.01 ft + 3 ppm) ±(5 mm + 3 ppm) ±(0.016 ft + 3 ppm) 2 m (6.5 ft)	±(3 mm + 3 ppm) ±(0.01 ft + 3 ppm) ±(5 mm + 3 ppm) ±(0.016 ft + 3 ppm) 2 m (6.5 ft)	±(3 mm + 3 ppm) ±(0.01 ft + 3 ppm) ±(5 mm + 3 ppm) ±(0.016 ft + 3 ppm) 2 m (6.5 ft)
Distance Measurement (with or withou Accuracy SDV 5 - 200 m (16,4 ft - 656 ft) beyond 200 m (656 ft) (without reflector Shortest possible range: Least count Arithmetic mean value (D-bar): Standard measurement (STD):	$\frac{\text{tt reflector})}{\pm (3 \text{ mm} + 3 \text{ ppm})} \\ \pm (0.01 \text{ ft} + 3 \text{ ppm}) \\ \text{t}(0.016 \text{ ft} + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft} + 3 \text{ ppm}) \\ 2 \text{ m } (6.5 \text{ ft}) \\ 0.1 \text{ mm} (0.0005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \end{cases}$	$\pm(3 \text{ mm} + 3 \text{ ppm})$ $\pm(0.01 \text{ ft} + 3 \text{ ppm})$ $\pm(5 \text{ mm} + 3 \text{ ppm})$ $\pm(0.016 \text{ ft} + 3 \text{ ppm})$ 2 m (6.5 ft) 1 mm (0.005 ft) 1 mm (0.005 ft)	$\begin{array}{l} \pm (3 \text{ mm } + 3 \text{ ppm}) \\ \pm (0.01 \text{ ft } + 3 \text{ ppm}) \\ \pm (5 \text{ mm } + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft } + 3 \text{ ppm}) \\ 2 \text{ m } (6.5 \text{ ft}) \\ 1 \text{ mm } (0.005 \text{ ft}) \\ 1 \text{ mm } (0.005 \text{ ft}) \end{array}$	\pm (3 mm + 3 ppm) \pm (0.01 ft + 3 ppm) \pm (5 mm + 3 ppm) \pm (0.016 ft + 3 ppm) 2 m (6.5 ft) 1 mm (0.005 ft) 1 mm (0.005 ft)
Distance Measurement (with or withou Accuracy SDV 5 - 200 m (16,4 ft - 656 ft) beyond 200 m (656 ft) (without reflector Shortest possible range: Least count Arithmetic mean value (D-bar): Standard measurement (STD): Fast standard (FSTD): Tracking (TRK):	$\frac{\text{tt reflector})}{\pm (3 \text{ mm} + 3 \text{ ppm})} \\ \pm (0.01 \text{ ft} + 3 \text{ ppm}) \\ \pm (5 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft} + 3 \text{ ppm}) \\ 2 \text{ m} (6.5 \text{ ft}) \\ 0.1 \text{ mm} (0.0005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \end{cases}$	$\begin{array}{c} \pm (3 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.01 \text{ ft} + 3 \text{ ppm}) \\ \pm (5 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft} + 3 \text{ ppm}) \\ 2 \text{ m} (6.5 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \end{array}$	$\begin{array}{c} \pm (3 \text{ mm } + 3 \text{ ppm}) \\ \pm (0.01 \text{ ft } + 3 \text{ ppm}) \\ \pm (5 \text{ mm } + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft } + 3 \text{ ppm}) \\ 2 \text{ m } (6.5 \text{ ft}) \\ 1 \text{ mm } (0.005 \text{ ft}) \\ 1 \text{ mm } (0.005 \text{ ft}) \\ 1 \text{ mm } (0.005 \text{ ft}) \end{array}$	$\begin{array}{l} \pm (3 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.01 \text{ ft} + 3 \text{ ppm}) \\ \pm (5 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft} + 3 \text{ ppm}) \\ 2 \text{ m} (6.5 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \end{array}$
Distance Measurement (with or withou Accuracy SDV 5 - 200 m (16,4 ft - 656 ft) beyond 200 m (656 ft) (without reflector Shortest possible range: Least count Arithmetic mean value (D-bar): Standard measurement (STD): Fast standard (FSTD): Tracking (TRK): Measuring time (with reflector) Arithmetic mean value (D-bar):	$\frac{\text{ut reflector})}{\pm (3 \text{ mm } + 3 \text{ ppm})} \\ \pm (0.01 \text{ ft } + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft } + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft } + 3 \text{ ppm}) \\ 2 \text{ m } (6.5 \text{ ft}) \\ 0.1 \text{ mm } (0.0005 \text{ ft}) \\ 1 \text{ mm } (0.005 \text{ ft}) \\ 1 \text{ mm } (0.005 \text{ ft}) \\ 10 \text{ mm } (0.01 \text{ ft}) \\ \text{Users decision} \\ \end{bmatrix}$	$\pm (3 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.01 \text{ ft} + 3 \text{ ppm}) \\ \pm (5 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft} + 3 \text{ ppm}) \\ 2 \text{ m} (6.5 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \\ \text{Users decision} \\ \end{bmatrix}$	$\pm(3 \text{ mm} + 3 \text{ ppm}) \\ \pm(0.01 \text{ ft} + 3 \text{ ppm}) \\ \pm(5 \text{ mm} + 3 \text{ ppm}) \\ \pm(0.016 \text{ ft} + 3 \text{ ppm}) \\ 2 \text{ m} (6.5 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \\ \text{Users decision} \\ \end{bmatrix}$	$\pm(3 \text{ mm} + 3 \text{ ppm}) \\ \pm(0.01 \text{ ft} + 3 \text{ ppm}) \\ \pm(5 \text{ mm} + 3 \text{ ppm}) \\ \pm(0.016 \text{ ft} + 3 \text{ ppm}) \\ 2 \text{ m} (6.5 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \\ \text{Users decision} \\ \end{bmatrix}$
Distance Measurement (with or withou Accuracy SDV 5 - 200 m (16,4 ft - 656 ft) beyond 200 m (656 ft) (without reflector Shortest possible range: Least count Arithmetic mean value (D-bar): Standard measurement (STD): Fast standard (FSTD): Tracking (TRK): Weasuring time (with reflector) Arithmetic mean value (D-bar): Standard measurement (STD):	$\frac{\text{tt reflector})}{\pm (3 \text{ mm} + 3 \text{ ppm})} \\ \pm (0.01 \text{ ft} + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft} + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft} + 3 \text{ ppm}) \\ 2 \text{ m } (6.5 \text{ ft}) \\ 0.1 \text{ mm} (0.0005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \\ \text{Users decision} \\ 2 \text{ sec.} \\ \end{array}$	$\begin{array}{c} \pm (3 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.01 \text{ ft} + 3 \text{ ppm}) \\ \pm (5 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft} + 3 \text{ ppm}) \\ 2 \text{ m} (6.5 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \\ \end{array}$	$\begin{array}{c} \pm (3 \text{ mm } + 3 \text{ ppm}) \\ \pm (0.01 \text{ ft } + 3 \text{ ppm}) \\ \pm (5 \text{ mm } + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft } + 3 \text{ ppm}) \\ 2 \text{ m } (6.5 \text{ ft}) \\ 1 \text{ mm } (0.005 \text{ ft}) \\ 1 \text{ mm } (0.005 \text{ ft}) \\ 1 \text{ mm } (0.005 \text{ ft}) \\ 10 \text{ mm } (0.01 \text{ ft}) \\ \end{array}$	$\begin{array}{c} \pm (3 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.01 \text{ ft} + 3 \text{ ppm}) \\ \pm (5 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft} + 3 \text{ ppm}) \\ 2 \text{ m} (6.5 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \\ \end{array}$
Distance Measurement (with or withou Accuracy SDV 5 - 200 m (16,4 ft - 656 ft) beyond 200 m (656 ft) (without reflector Shortest possible range: Least count Arithmetic mean value (D-bar): Standard measurement (STD): Fast standard (FSTD): Tracking (TRK): Measuring time (with reflector) Arithmetic mean value (D-bar):	$\frac{\text{ut reflector})}{\pm (3 \text{ mm } + 3 \text{ ppm})} \\ \pm (0.01 \text{ ft } + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft } + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft } + 3 \text{ ppm}) \\ 2 \text{ m } (6.5 \text{ ft}) \\ 0.1 \text{ mm } (0.0005 \text{ ft}) \\ 1 \text{ mm } (0.005 \text{ ft}) \\ 1 \text{ mm } (0.005 \text{ ft}) \\ 10 \text{ mm } (0.01 \text{ ft}) \\ \text{Users decision} \\ \end{bmatrix}$	$\pm (3 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.01 \text{ ft} + 3 \text{ ppm}) \\ \pm (5 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft} + 3 \text{ ppm}) \\ 2 \text{ m} (6.5 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \\ \text{Users decision} \\ \end{bmatrix}$	$\pm(3 \text{ mm} + 3 \text{ ppm}) \\ \pm(0.01 \text{ ft} + 3 \text{ ppm}) \\ \pm(5 \text{ mm} + 3 \text{ ppm}) \\ \pm(0.016 \text{ ft} + 3 \text{ ppm}) \\ 2 \text{ m} (6.5 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \\ \text{Users decision} \\ \end{bmatrix}$	$\pm(3 \text{ mm} + 3 \text{ ppm}) \\ \pm(0.01 \text{ ft} + 3 \text{ ppm}) \\ \pm(5 \text{ mm} + 3 \text{ ppm}) \\ \pm(0.016 \text{ ft} + 3 \text{ ppm}) \\ 2 \text{ m} (6.5 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \\ \text{Users decision} \\ \end{bmatrix}$
Distance Measurement (with or withou Accuracy SDV 5 - 200 m (16,4 ft - 656 ft) beyond 200 m (656 ft) (without reflector Shortest possible range: Least count Arithmetic mean value (D-bar): Standard measurement (STD): Fast standard (FSTD): Tracking (TRK): Measuring time (with reflector) Arithmetic mean value (D-bar): Standard measurement (STD): Fast standard (FSTD): Tracking (TRK):	$\frac{\text{it reflector})}{\pm (3 \text{ mm} + 3 \text{ ppm})} \\ \pm (0.01 \text{ ft} + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft} + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft} + 3 \text{ ppm}) \\ 2 \text{ m } (6.5 \text{ ft}) \\ 0.1 \text{ mm} (0.0005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \\ \text{Users decision} \\ 2 \text{ sec.} $	$\begin{array}{c} \pm (3 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.01 \text{ ft} + 3 \text{ ppm}) \\ \pm (5 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft} + 3 \text{ ppm}) \\ 2 \text{ m} (6.5 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \\ \end{array}$ Users decision 2 sec. 2 sec.	$\begin{array}{c} \pm (3 \text{ mm } + 3 \text{ ppm}) \\ \pm (0.01 \text{ ft } + 3 \text{ ppm}) \\ \pm (5 \text{ mm } + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft } + 3 \text{ ppm}) \\ 2 \text{ m } (6.5 \text{ ft}) \\ 1 \text{ mm } (0.005 \text{ ft}) \\ 1 \text{ mm } (0.005 \text{ ft}) \\ 1 \text{ mm } (0.005 \text{ ft}) \\ 10 \text{ mm } (0.01 \text{ ft}) \\ \end{array}$	$\begin{array}{c} \pm (3 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.01 \text{ ft} + 3 \text{ ppm}) \\ \pm (5 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft} + 3 \text{ ppm}) \\ 2 \text{ m} (6.5 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \\ \end{array}$ Users decision 2 sec. 2 sec.
Distance Measurement (with or withou Accuracy SDV 5 - 200 m (16,4 ft - 656 ft) beyond 200 m (656 ft) (without reflector Shortest possible range: Least count Arithmetic mean value (D-bar): Standard measurement (STD): Fast standard (FSTD): Tracking (TRK): Measuring time (with reflector) Arithmetic mean value (D-bar): Standard measurement (STD): Fast standard (FSTD): Tracking (TRK): Measuring time (without reflector) Arithmetic mean value (D-bar):	$\frac{\text{ut reflector})}{\pm (3 \text{ mm } + 3 \text{ ppm})} \\ \pm (0.01 \text{ ft } + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft } + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft } + 3 \text{ ppm}) \\ 2 \text{ m } (6.5 \text{ ft}) \\ 0.1 \text{ mm } (0.0005 \text{ ft}) \\ 1 \text{ mm } (0.005 \text{ ft}) \\ 1 \text{ mm } (0.005 \text{ ft}) \\ 10 \text{ mm } (0.01 \text{ ft}) \\ 0.1 \text{ sec.} \\ 2 \text{ sec.} \\ 2 \text{ sec.} \\ 0.4 \text{ sec.} \\ \text{Users decision} \\ Users d$	<pre>±(3 mm + 3 ppm) ±(0.01 ft + 3 ppm) ±(5 mm + 3 ppm) ±(0.016 ft + 3 ppm) 2 m (6.5 ft) 1 mm (0.005 ft) 1 mm (0.005 ft) 1 mm (0.005 ft) 10 mm (0.01 ft) Users decision 2 sec. 2 sec. 0.4 sec.</pre>	$\pm (3 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.01 \text{ ft} + 3 \text{ ppm}) \\ \pm (5 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft} + 3 \text{ ppm}) \\ 2 \text{ m} (6.5 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \\ 0.01 \text{ ft}) \\ \text{Users decision} \\ 2 \text{ sec.} \\ 2 \text{ sec.} \\ 0.4 \text{ sec.} \\ \text{Users decision} \\ User$	$\pm (3 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.01 \text{ ft} + 3 \text{ ppm}) \\ \pm (5 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft} + 3 \text{ ppm}) \\ 2 \text{ m} (6.5 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \\ \text{Users decision} \\ 2 \text{ sec.} \\ 2 \text{ sec.} \\ 0.4 \text{ sec.} \\ \text{Users decision} \\ \text$
Distance Measurement (with or withou Accuracy SDV 5 - 200 m (16,4 ft - 656 ft) beyond 200 m (656 ft) (without reflector Shortest possible range: Least count Arithmetic mean value (D-bar): Standard measurement (STD): Fast standard (FSTD): Tracking (TRK): Measuring time (with reflector) Arithmetic mean value (D-bar): Standard measurement (STD): Fast standard (FSTD): Tracking (TRK): Measuring time (without reflector) Arithmetic mean value (D-bar): Standard measurement (STD): Tracking time (without reflector) Arithmetic mean value (D-bar): Standard measurement (STD):	$\frac{\text{ut reflector})}{\pm (3 \text{ mm } + 3 \text{ ppm})} \\ \pm (0.01 \text{ ft } + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft } + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft } + 3 \text{ ppm}) \\ 2 \text{ m } (6.5 \text{ ft}) \\ 0.1 \text{ mm } (0.005 \text{ ft}) \\ 1 \text{ mm } (0.005 \text{ ft}) \\ 1 \text{ mm } (0.005 \text{ ft}) \\ 10 \text{ mm } (0.01 \text{ ft}) \\ 0.1 \text{ sec.} \\ 2 \text{ sec.} \\ 2 \text{ sec.} \\ 0.4 \text{ sec.} \\ 0.4 \text{ sec.} \\ 0.5 \text{ sec.} \\ 2 \text{ sec.} \\ 0.4 \text{ sec.} \\ 0.5 \text{ sec.} \\ 0.$	<pre>±(3 mm + 3 ppm) ±(0.01 ft + 3 ppm) ±(5 mm + 3 ppm) ±(0.016 ft + 3 ppm) 2 m (6.5 ft) 1 mm (0.005 ft) 1 mm (0.005 ft) 1 mm (0.005 ft) 10 mm (0.01 ft) Users decision 2 sec. 2 sec. 0.4 sec. Users decision 2-10 sec.</pre>	$\begin{array}{c} \pm (3 \text{ mm } + 3 \text{ ppm}) \\ \pm (0.01 \text{ ft } + 3 \text{ ppm}) \\ \pm (5 \text{ mm } + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft } + 3 \text{ ppm}) \\ 2 \text{ m } (6.5 \text{ ft}) \\ 1 \text{ mm } (0.005 \text{ ft}) \\ 1 \text{ mm } (0.005 \text{ ft}) \\ 1 \text{ mm } (0.005 \text{ ft}) \\ 10 \text{ mm } (0.01 \text{ ft}) \\ \end{array}$ Users decision 2 sec. 2 sec. 0.4 sec. Users decision 2-10 sec.	$\begin{array}{c} \pm (3 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.01 \text{ ft} + 3 \text{ ppm}) \\ \pm (5 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft} + 3 \text{ ppm}) \\ 2 \text{ m} (6.5 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \\ 0.01 \text{ ft}) \\ \end{array}$ Users decision 2 sec. 2 sec. 0.4 sec. Users decision 2-10 sec.
Distance Measurement (with or withou Accuracy SDV 5 - 200 m (16,4 ft - 656 ft) beyond 200 m (656 ft) (without reflector Shortest possible range: Least count Arithmetic mean value (D-bar): Standard measurement (STD): Fast standard (FSTD): Tracking (TRK): Measuring time (with reflector) Arithmetic mean value (D-bar): Standard measurement (STD): Fast standard (FSTD): Tracking (TRK): Measuring time (without reflector) Arithmetic mean value (D-bar):	$\frac{\text{ut reflector})}{\pm (3 \text{ mm } + 3 \text{ ppm})} \\ \pm (0.01 \text{ ft } + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft } + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft } + 3 \text{ ppm}) \\ 2 \text{ m } (6.5 \text{ ft}) \\ 0.1 \text{ mm } (0.0005 \text{ ft}) \\ 1 \text{ mm } (0.005 \text{ ft}) \\ 1 \text{ mm } (0.005 \text{ ft}) \\ 10 \text{ mm } (0.01 \text{ ft}) \\ 0.1 \text{ sec.} \\ 2 \text{ sec.} \\ 2 \text{ sec.} \\ 0.4 \text{ sec.} \\ \text{Users decision} \\ Users d$	<pre>±(3 mm + 3 ppm) ±(0.01 ft + 3 ppm) ±(5 mm + 3 ppm) ±(0.016 ft + 3 ppm) 2 m (6.5 ft) 1 mm (0.005 ft) 1 mm (0.005 ft) 1 mm (0.005 ft) 10 mm (0.01 ft) Users decision 2 sec. 2 sec. 0.4 sec.</pre>	$\pm (3 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.01 \text{ ft} + 3 \text{ ppm}) \\ \pm (5 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft} + 3 \text{ ppm}) \\ 2 \text{ m} (6.5 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \\ 0.01 \text{ ft}) \\ \text{Users decision} \\ 2 \text{ sec.} \\ 2 \text{ sec.} \\ 0.4 \text{ sec.} \\ \text{Users decision} \\ User$	$\pm (3 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.01 \text{ ft} + 3 \text{ ppm}) \\ \pm (5 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft} + 3 \text{ ppm}) \\ 2 \text{ m} (6.5 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \\ \text{Users decision} \\ 2 \text{ sec.} \\ 2 \text{ sec.} \\ 0.4 \text{ sec.} \\ \text{Users decision} \\ \text$
Distance Measurement (with or withou Accuracy SDV 5 - 200 m (16,4 ft - 656 ft) beyond 200 m (656 ft) (without reflector Shortest possible range: Least count Arithmetic mean value (D-bar): Standard measurement (STD): Fast standard (FSTD): Tracking (TRK): Measuring time (with reflector) Arithmetic mean value (D-bar): Standard measurement (STD): Fast standard (FSTD): Tracking (TRK): Measuring time (without reflector) Arithmetic mean value (D-bar): Standard measurement (STD): Fast standard (FSTD): Tracking (TRK):	$\frac{\text{it reflector})}{\pm (3 \text{ mm} + 3 \text{ ppm})} \\ \pm (0.01 \text{ ft} + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft} + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft} + 3 \text{ ppm}) \\ 2 \text{ m} (6.5 \text{ ft}) \\ 0.1 \text{ mm} (0.0005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \\ 0.1 \text{ sec.} \\ 2 \text{ sec.} \\ 2 \text{ sec.} \\ 0.4 \text{ sec.} \\ 0.4 \text{ sec.} \\ 2 \text{ sec.} \\ $	$\begin{array}{c} \pm (3 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.01 \text{ ft} + 3 \text{ ppm}) \\ \pm (5 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft} + 3 \text{ ppm}) \\ 2 \text{ m} (6.5 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \\ \end{array}$ Users decision 2 sec. 2 sec. 0.4 sec. \\ Users decision 2-10 sec. 2-10 sec. \\2-10 sec. \\\end{array}	$\begin{array}{c} \pm (3 \text{ mm } + 3 \text{ ppm}) \\ \pm (0.01 \text{ ft } + 3 \text{ ppm}) \\ \pm (5 \text{ mm } + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft } + 3 \text{ ppm}) \\ 2 \text{ m } (6.5 \text{ ft}) \\ 1 \text{ mm } (0.005 \text{ ft}) \\ 1 \text{ mm } (0.005 \text{ ft}) \\ 1 \text{ mm } (0.005 \text{ ft}) \\ 10 \text{ mm } (0.01 \text{ ft}) \\ \end{array}$ Users decision 2 sec. 2 sec. 0.4 sec. Users decision 2-10 sec. 2-	$\begin{array}{c} \pm (3 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.01 \text{ ft} + 3 \text{ ppm}) \\ \pm (5 \text{ mm} + 3 \text{ ppm}) \\ \pm (5 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft} + 3 \text{ ppm}) \\ 2 \text{ m} (6.5 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
Distance Measurement (with or withou Accuracy SDV 5 - 200 m (16,4 ft - 656 ft) beyond 200 m (656 ft) (without reflector Shortest possible range: Least count Arithmetic mean value (D-bar): Standard measurement (STD): Fast standard (FSTD): Tracking (TRK): Measuring time (with reflector) Arithmetic mean value (D-bar): Standard measurement (STD): Fast standard (FSTD): Tracking (TRK): Measuring time (without reflector) Arithmetic mean value (D-bar): Standard measurement (STD): Fast standard (FSTD): Tracking (TRK): Measuring time (without reflector) Arithmetic mean value (D-bar): Standard measurement (STD): Fast standard (FSTD): Tracking (TRK): Light source:	$\frac{\text{tt reflector})}{\pm (3 \text{ mm} + 3 \text{ ppm})} \\ \pm (0.01 \text{ ft} + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft} + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft} + 3 \text{ ppm}) \\ 2 \text{ m} (6.5 \text{ ft}) \\ 0.1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \\ 0.1 \text{ sec.} \\ 2 \text{ sec.} \\ 0.4 \text{ sec.} \\ 10 \text{ sec.} \\ 2.10 \text{ sec.} \\ 0.4 \text{ sec.} \\ 1\text{ IR Laser Diode} \\ \end{bmatrix}$	$\begin{array}{c} \pm (3 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.01 \text{ ft} + 3 \text{ ppm}) \\ \pm (5 \text{ mm} + 3 \text{ ppm}) \\ \pm (5 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft} + 3 \text{ ppm}) \\ 2 \text{ m} (6.5 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \\ \end{array}$ Users decision 2 sec. 2 sec. 0.4 sec. Users decision 2-10 sec. 0.4 sec. IR Laser Diode	$\begin{array}{c} \pm (3 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.01 \text{ ft} + 3 \text{ ppm}) \\ \pm (5 \text{ mm} + 3 \text{ ppm}) \\ \pm (5 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft} + 3 \text{ ppm}) \\ 2 \text{ m} (6.5 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{c} \pm (3 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.01 \text{ ft} + 3 \text{ ppm}) \\ \pm (5 \text{ mm} + 3 \text{ ppm}) \\ \pm (5 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft} + 3 \text{ ppm}) \\ 2 \text{ m} (6.5 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
Distance Measurement (with or withou Accuracy SDV 5 - 200 m (16,4 ft - 656 ft) beyond 200 m (656 ft) (without reflector Shortest possible range: Least count Arithmetic mean value (D-bar): Standard measurement (STD): Fast standard (FSTD): Tracking (TRK): Measuring time (with reflector) Arithmetic mean value (D-bar): Standard measurement (STD): Fast standard (FSTD): Tracking (TRK): Measuring time (without reflector) Arithmetic mean value (D-bar): Standard measurement (STD): Fast standard (FSTD): Tracking (TRK):	$\frac{\text{tt reflector})}{\pm (3 \text{ mm} + 3 \text{ ppm})} \\ \pm (0.01 \text{ ft} + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft} + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft} + 3 \text{ ppm}) \\ 2 \text{ m} (6.5 \text{ ft}) \\ 0.1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \\ 0.1 \text{ sec.} \\ 2 \text{ sec.} \\ 0.4 \text{ sec.} \\ 10 \text{ sec.} \\ 2.10 \text{ sec.} \\ 0.4 \text{ sec.} \\ 1\text{ IR Laser Diode} \\ \end{bmatrix}$	$\begin{array}{c} \pm (3 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.01 \text{ ft} + 3 \text{ ppm}) \\ \pm (5 \text{ mm} + 3 \text{ ppm}) \\ \pm (5 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft} + 3 \text{ ppm}) \\ 2 \text{ m} (6.5 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \\ \end{array}$ Users decision 2 sec. 2 sec. 0.4 sec. Users decision 2-10 sec. 0.4 sec. IR Laser Diode	$\begin{array}{c} \pm (3 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.01 \text{ ft} + 3 \text{ ppm}) \\ \pm (5 \text{ mm} + 3 \text{ ppm}) \\ \pm (5 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft} + 3 \text{ ppm}) \\ 2 \text{ m} (6.5 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{c} \pm (3 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.01 \text{ ft} + 3 \text{ ppm}) \\ \pm (5 \text{ mm} + 3 \text{ ppm}) \\ \pm (5 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft} + 3 \text{ ppm}) \\ 2 \text{ m} (6.5 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
Distance Measurement (with or withou Accuracy SDV 5 - 200 m (16,4 ft - 656 ft) beyond 200 m (656 ft) (without reflector Shortest possible range: Least count Arithmetic mean value (D-bar): Standard measurement (STD): Fast standard (FSTD): Tracking (TRK): Weasuring time (with reflector) Arithmetic mean value (D-bar): Standard measurement (STD): Fast standard (FSTD): Tracking (TRK): Weasuring time (without reflector) Arithmetic mean value (D-bar): Standard measurement (STD): Fast standard (FSTD): Tracking (TRK): Ueasuring time (without reflector) Arithmetic mean value (D-bar): Standard measurement (STD): Fast standard (FSTD): Tracking (TRK): Light source:	$\frac{\text{tt reflector})}{\pm (3 \text{ mm} + 3 \text{ ppm})} \\ \pm (0.01 \text{ ft} + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft} + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft} + 3 \text{ ppm}) \\ 2 \text{ m} (6.5 \text{ ft}) \\ 0.1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \\ 10 \text{ sec.} \\ 2 \text{ sec.} \\ 2 \text{ sec.} \\ 2 \text{ sec.} \\ 0.4 \text{ sec.} \\ \\ \text{Users decision} \\ 2 \text{ -10 sec.} \\ 2 \text{ -10 sec.} \\ 0.4 \text{ sec.} \\ \text{IR Laser Diode} \\ 850 \text{ nm} \\ \end{cases}$	$\begin{array}{c} \pm (3 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.01 \text{ ft} + 3 \text{ ppm}) \\ \pm (5 \text{ mm} + 3 \text{ ppm}) \\ \pm (5 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft} + 3 \text{ ppm}) \\ 2 \text{ m} (6.5 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \\ \end{array}$ Users decision 2 sec. 2 sec. 0.4 sec. Users decision 2-10 sec. 2-10 sec. 2-10 sec. 0.4 sec. IR Laser Diode 850 nm	$\begin{array}{c} \pm (3 \text{ mm } + 3 \text{ ppm}) \\ \pm (0.01 \text{ ft } + 3 \text{ ppm}) \\ \pm (5 \text{ mm } + 3 \text{ ppm}) \\ \pm (5 \text{ mm } + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft } + 3 \text{ ppm}) \\ 2 \text{ m } (6.5 \text{ ft}) \\ 1 \text{ mm } (0.005 \text{ ft}) \\ 10 \text{ mm } (0.01 \text{ ft}) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{c} \pm (3 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.01 \text{ ft} + 3 \text{ ppm}) \\ \pm (5 \text{ mm} + 3 \text{ ppm}) \\ \pm (5 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft} + 3 \text{ ppm}) \\ 2 \text{ m} (6.5 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \\ \\ \text{Users decision} \\ 2 \text{ sec.} \\ 2 \text{ sec.} \\ 2 \text{ sec.} \\ 0.4 \text{ sec.} \\ \\ \text{Users decision} \\ 2 \text{ -10 sec.} \\ 0.4 \text{ sec.} \\ \\ \text{IR Laser Diode} \\ 850 \text{ nm} \\ \\ 0.4 \text{ mrad} (4 \text{ cm}/100 \text{ m}) \\ (0.13 \text{ ft}/328 \text{ ft}) \end{array}$
Distance Measurement (with or withou Accuracy SDV 5 - 200 m (16,4 ft - 656 ft) beyond 200 m (656 ft) (without reflector Shortest possible range: Least count Arithmetic mean value (D-bar): Standard measurement (STD): Fast standard (FSTD): Tracking (TRK): Measuring time (with reflector) Arithmetic mean value (D-bar): Standard measurement (STD): Fast standard (FSTD): Tracking (TRK): Measuring time (without reflector) Arithmetic mean value (D-bar): Standard measurement (STD): Fast standard (FSTD): Tracking (TRK): Measuring time (without reflector) Arithmetic mean value (D-bar): Standard measurement (STD): Fast standard (FSTD): Tracking (TRK): Light source: Beam divergence Horizontal:	$\frac{\text{tt reflector})}{\pm (3 \text{ mm} + 3 \text{ ppm})} \\ \pm (0.01 \text{ ft} + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft} + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft} + 3 \text{ ppm}) \\ 2 \text{ m} (6.5 \text{ ft}) \\ 0.1 \text{ mm} (0.0005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \\ 0.1 \text{ mm} (0.01 \text{ ft}) \\ 0.2 \text{ sec.} \\ 2 \text{ sec.} \\ 2 \text{ sec.} \\ 2 \text{ sec.} \\ 0.4 \text{ sec.} \\ Users decision \\ 2 \text{ -10 sec.} \\ 0.4 \text{ sec.} \\ IR \text{ Laser Diode} \\ 850 \text{ nm} \\ 0.4 \text{ mrad} (4 \text{ cm}/100 \text{ m}) \\ (0.13 \text{ ft}/328 \text{ ft}) \\ 0.8 \text{ mrad} (8 \text{ cm}/100 \text{ m}) \\ \end{array}$	$\begin{array}{c} \pm (3 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.01 \text{ ft} + 3 \text{ ppm}) \\ \pm (5 \text{ mm} + 3 \text{ ppm}) \\ \pm (5 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft} + 3 \text{ ppm}) \\ 2 \text{ m} (6.5 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{c} \pm (3 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.01 \text{ ft} + 3 \text{ ppm}) \\ \pm (5 \text{ mm} + 3 \text{ ppm}) \\ \pm (5 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft} + 3 \text{ ppm}) \\ 2 \text{ m} (6.5 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{c} \pm (3 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.01 \text{ ft} + 3 \text{ ppm}) \\ \pm (5 \text{ mm} + 3 \text{ ppm}) \\ \pm (5 \text{ mm} + 3 \text{ ppm}) \\ \pm (0.016 \text{ ft} + 3 \text{ ppm}) \\ 2 \text{ m} (6.5 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 1 \text{ mm} (0.005 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \\ 10 \text{ mm} (0.01 \text{ ft}) \\ \\ \text{Users decision} \\ 2 \text{ sec.} \\ 2 \text{ sec.} \\ 0.4 \text{ sec.} \\ \\ \text{Users decision} \\ 2 \text{ -10 sec.} \\ 0.4 \text{ sec.} \\ \\ \text{IR Laser Diode} \\ 850 \text{ nm} \\ \\ 0.4 \text{ mrad} (4 \text{ cm}/100 \text{ m}) \\ (0.13 \text{ ft}/328 \text{ ft}) \\ 0.8 \text{ mrad} (8 \text{ cm}/100 \text{ m}) \end{array}$

ACCURACY	5601 5601 DR200+	5602 5602 DR200+	5603 5603 DR200+	5605 5605 DR200+
Angle Measurement				
Accuracy (Standard deviation based on				
DIN 18723)	1" (0.3 mgon)	2" (0.5 mgon)	3" (1.0 mgon)	5" (1.5 mgon)
Angle reading (least count)				
Number of decimals can be specified				
by the user				
Arithmetic mean value (D-bar):	0.1" (0.01 mgon) (horizontal angle)	1" (0.1 mgon)	1" (0.1 mgon)	1" (0.1 mgon)
Standard measurement:	× 0,			
Fast tracking:	1" (0.1 mgon)	1" (0.1 mgon)	1" (0.1 mgon)	1" (0.1 mgon)
Automatic level compensator	2" (0.5 mgon)	2" (0.5 mgon)	2" (0.5 mgon)	2" (0.5 mgon)
Dual-axis compensator with a				
working range of:	6' (±100 mgon)	6' (±100 mgon)	6' (±100 mgon)	6' (±100 mgon)
RANGE 5600	MODULE 1	MODULE 2	MODULE 3	MODULE 4 MODULE 5
	(OPTION)	(OPTION)	(STANDARD)	(OPTION) (STANDARD)

Range using Geodimeter* prism 571 125 021. Standard clear*

With one prism:	2500 m (1.6 miles)	2000 m (1.2 miles)	1500 m (0.9 miles)	1800 m 1200 m
With one prism, long range mode:	3500 m (2.2 miles)	2800 m (1.7 miles)		(1.1 miles) (0.7 miles)
With 3 prisms:	3500 m (2.2 miles)	2800 m (1.7 miles)	2100 m (1.3 miles)	2500 m
With 3 prisms, long range mode:	4600 m (2.9 miles)	3900 m (2.5 miles)	2900 m (1.8 miles)	(1.6 miles)
With 8 prisms: With 8 prisms, long range mode:	4500 m (2.8 miles) 5800 m (3.6 miles)	3800 m (2.4 miles) 5000 m (3.1 miles)		

RANGE 5600 DR200+

Concrete

Light Rock

Dark Rock

Wood Constructions Metal Constructions

Range using a reflector	
Range using Geodimeter prism 571 125 021. Standard clear*	
With one prism	5500 m (3.4 miles) (max.range)
Range using Plastic Reflector	1500 m (0.9 miles)
Range using Reflex Tape	800 m (0.5 miles)
Range Direct Reflex measurement (typically):	
Range Kodak Gray (18% reflective)	>200 m (656 ft)
Range Kodak White (90% reflective)	>600 m (1968 ft)

*Standard clear: No haze, overcast or moderate sunlight with very light heat shimmer. Range and Accuracy might vary depending on weather conditions and variation of reflective quality on different type of surfaces.

SPECIFICATIONS FOR ROBOTIC SURVEYING

Range Robotic*: Range Autolock*:		(0.9 miles) depending on type of RMT (1.3 miles) depending on type of RMT	Measuring time Standard measurement: Fast tracking:	5 – 10 sec. 0.4 sec.
Shortest search distar	nce:	1.5 m (5 ft)	Search time (typical):	<10 sec. **
Positioning accuracy a (Standard deviation)	at 200 m	<2 mm (0.007 ft)	Search area:	400 gon (360 degrees), or defined search window
Angle reading (least count)Arithmetic mean value (D-bar):1" (0.1 mgon)Standard measurement1" (0.1 mgon)Fast tracking2" (0.5 mgon)		* Range and accuracy are dependent on atmospheric conditions and background radiation ** Dependent on selected search window.		

200 - 300 m (656 - 984 ft) 150 - 300 m (492 - 984 ft)

150 - 200 m (492 - 656 ft) 150 - 250 m (492 - 820 ft)

100 - 150 m (328 - 492 ft)

5600 DR200+

The principle of the new Direct Reflex Distance Meter. "Time of flight"

The measurement technique used in DR200+ is based on the pulse measurement principle, e.g. the time for a transmitted very short light pulse to travel to the Target and back again is measured. What differs from earlier distance meters using this principle, is a unique method of taking the average of many pulses and determining the shape of the pulse before the transit time is calculated. In this way the influence of noise can be reduced to a large extent, and both the Range and the Accuracy can be increased considerably.

PRODUCT SUPPORT PROGRAMS

1. S_Dev

In this menu the requested accuracy can be entered. The system will accept values from 0.001 to 0.9 (1 mm to 0.9 m).

During the measurement you will be able to see the "count down" towards the keyed in value. If the requested value is not achieved, the distance measurement can be stopped and the achieved Standard deviation will be displayed.

 S_Dev — the data, e.g. $SD{=}256.456$ S_Dev=0.003 OK?

If OK the displayed distance will be used.

2. Meas. Method

(Measurement Method) 1= Reflector 2= No Reflector Simply select the required method.

3. Dist. Interval (Direct Reflex mode only)

(Distance Interval) From = To = In this menu you can select the measurement interval. The system is set up by default as:

Combining Direct Reflex and Robotic.

By combining the two methods you have the ultimate one-person operating system. Imagine that all vertical objects within range are measured from behind the Instrument. Then simply move over to Robotic mode and measure the rest of the points. This will save a lot of time and the productivity will be further increased.

The user can change these default values. If the object to be measured is more than 200 m (656 ft) away you can change the "To=" value to e.g. 300 or 400 m (984 or 1312 ft). Another way to use this function is if you want to measure a small object on let us assume 50 m (164 ft). 150 m (492 ft) behind the object you have a white building. To avoid a result from the strong reflective building you can set the values to: From = 2

 $T_0 = 100$

The system will look for an object within this given interval.

4. Pointer

The Laser Pointer is optional, and is fitted to the Top Coarse Sight position. Support programs are provided to e.g. Point at Spot using the servo control.

5. Weak signal

1 = On

2 = Off

When the signal becomes too weak, the Instrument will not display a result, because the accuracy will not be within the specification. Sometimes however you want to have a result anyway. In that case set the switch to 1 = On.

The accuracy will decrease to $\pm(10 \text{ mm} + 3 \text{ ppm})(0.032 \text{ ft} + 3 \text{ ppm})$ but, on the other hand, you will be able to measure using a very weak signal.

GENERAL SPECIFICATIONS			
Aiming	Servo-drive. Endless fine adjustment	Batteries:	
		Central unit:	rechargeable NiMH battery 12V, 1.6 Ah
Levelling		External:	rechargeable NiMH battery 12V, 3.5 Ah
Compensator	Dual axis compensator		
Working range	6' (±100 mgon)	Power consumption:	0.5A – 1.0A depending on use of servo,
Circular level in tribrach:	8'/2 mm (8'/0.007 ft)		tracker, radio and type of measurement mode.
Electronic 2-axis level in			
the LC-display with a		Weight	
resolution of:	6" (2 mgon)	Instrument (incl. Geodimeter	
		Control Unit):	6.4 kg (14.1 lbs)
Centering:	Optical plummet in tribrach	Tribrach:	0.7 kg (1.5 lbs)
		Internal battery:	0.4 kg (0.9 lbs)
Telescope	Coaxial	Instrument for robotic surveying:	
Magnification:	26X (30X optional)	(incl. Tracker and built in radio)	7.5 kg (16.5 lbs)
Focussing range:	1.7 m (5.58 ft) to infinity		
Field of view:	2.6 m at 100 m (8.5 ft at 328 ft)	Control Unit options:	
Illuminated crosshair:	Yes, variable (15 steps)	Geodimeter Control Unit	
		GeodatWin Control Unit	
Operating temperature:	-20°C to +50°C (-5°F to +122°F)	Zeiss Elta Control Unit (with Elta S	oftware
		or Open System Software)	
Data input/output:	RS-232C Two-way communication	Trimble Control Unit	

ORDERING INFORMATION

For further information please contact your nearest Trimble Authorized Distributor or Trimble Office

You may also visit our website at http://www.trimble.com

SPECTRA Spectra Precision is now part of Trimble

Trimble Navigation Limited Engineering and Construction 5475 Kellenburger Road Dayton, Ohio 45424-1099 +1-800-538-7800 +1-937-233-8921 +1-937-233-9441 Fax www.trimble.com

Trimble Europe Trimble GmbH Am Prime Parc 11 D- 65479 Raunheim Germany +49-6142-2100 +49-6142-2100 220 Fax Trimble Navigation Singapore PTE Limited 80 Marine Parade Road #22-06. Parkway Parade Singapore 449269 Singapore +65-348-2212 +65-348-2232 Fax